ctapipe is not stable yet, so expect large and rapid changes to structure and functionality as we explore various design choices before the 1.0 release.

Use N-dimensional Histogram functionality and Interpolation#

  • could be used for example to read and interpolate an lookup table or IRF.

  • In this example, we load a sample energy reconstruction lookup-table from a FITS file

  • In this case it is only in 2D cube (to keep the file size small): SIZE vs IMPACT-DISTANCE, however the same method will work for any dimensionality

15 import matplotlib.pylab as plt
16 import numpy as np
17 from astropy.io import fits
18 from scipy.interpolate import RegularGridInterpolator
19
20 from ctapipe.utils import Histogram
21 from ctapipe.utils.datasets import get_dataset_path
22
23 # %matplotlib inline

load an example datacube#

(an energy table generated for a small subset of HESS simulations) to use as a lookup table. Here we will use the Histogram class, which automatically loads both the data cube and creates arrays for the coordinates of each axis.

36 testfile = get_dataset_path("hess_ct001_energylut.fits.gz")
37 energy_hdu = fits.open(testfile)["MEAN"]
38 energy_table = Histogram.from_fits(energy_hdu)
39 print(energy_table)
Downloading hess_ct001_energylut.fits.gz:   0%|          | 0.00/29.9k [00:00<?, ?B/s]
Downloading hess_ct001_energylut.fits.gz: 100%|██████████| 29.9k/29.9k [00:00<00:00, 298kB/s]
Downloading hess_ct001_energylut.fits.gz: 100%|██████████| 29.9k/29.9k [00:00<00:00, 296kB/s]
Histogram(name='Histogram', axes=['LSIZ' 'DIST'], nbins=[100 100], ranges=[[5.e-01 6.e+00]
 [0.e+00 2.e+03]])

construct an interpolator that we can use to get values at any point:#

Here we will use a RegularGridInterpolator, since it is the most appropriate for this type of data, but others are available (see the SciPy documentation)

51 centers = [energy_table.bin_centers(ii) for ii in range(energy_table.ndims)]
52 energy_lookup = RegularGridInterpolator(
53     centers, energy_table.hist, bounds_error=False, fill_value=-100
54 )

energy_lookup is now just a continuous function of log(SIZE), DISTANCE in m.

Now plot some curves from the interpolator.#

Note that the LUT we used is does not have very high statistics, so the interpolation starts to be affected by noise at the high end. In a real case, we would want to use a table that has been sanitized (smoothed and extrapolated)

70 lsize = np.linspace(1.5, 5.0, 100)
71 dists = np.linspace(50, 100, 5)
72
73 plt.figure()
74 plt.title("Variation of energy with size and impact distance")
75 plt.xlabel("SIZE (P.E.)")
76 plt.ylabel("ENERGY (TeV)")
77
78 for dist in dists:
79     plt.plot(
80         10**lsize,
81         10 ** energy_lookup((lsize, dist)),
82         "+-",
83         label="DIST={:.1f} m".format(dist),
84     )
85
86 plt.legend(loc="best")
Variation of energy with size and impact distance
<matplotlib.legend.Legend object at 0x7f7469ade110>

Using the interpolator, reinterpolate the lookup table onto an \(N \times N\) grid (regardless of its original dimensions):

 94 N = 300
 95 xmin, xmax = energy_table.bin_centers(0)[0], energy_table.bin_centers(0)[-1]
 96 ymin, ymax = energy_table.bin_centers(1)[0], energy_table.bin_centers(1)[-1]
 97 xx, yy = np.linspace(xmin, xmax, N), np.linspace(ymin, ymax, N)
 98 X, Y = np.meshgrid(xx, yy)
 99 points = list(zip(X.ravel(), Y.ravel()))
100 E = energy_lookup(points).reshape((N, N))

Now, let’s plot the original table and the new one (E). The color bar shows \(\log_{10}(E)\) in TeV

108 plt.figure(figsize=(12, 5))
109 plt.nipy_spectral()
110
111 # the uninterpolated table
112 plt.subplot(1, 2, 1)
113 plt.xlim(1.5, 5)
114 plt.ylim(0, 500)
115 plt.xlabel("log10(SIZE)")
116 plt.ylabel("Impact Dist (m)")
117 plt.pcolormesh(
118     energy_table.bin_centers(0), energy_table.bin_centers(1), energy_table.hist.T
119 )
120 plt.title(f"Raw table, uninterpolated {energy_table.hist.T.shape}")
121 cb = plt.colorbar()
122 cb.set_label(r"$\log_{10}(E/\mathrm{TeV})$")
123
124 # the interpolated table
125 plt.subplot(1, 2, 2)
126 plt.pcolormesh(np.linspace(xmin, xmax, N), np.linspace(ymin, ymax, N), E)
127 plt.xlim(1.5, 5)
128 plt.ylim(0, 500)
129 plt.xlabel("log10(SIZE)")
130 plt.ylabel("Impact Dist(m)")
131 plt.title("Interpolated to a ({0}, {0}) grid".format(N))
132 cb = plt.colorbar()
133 cb.set_label(r"$\log_{10}(E/\mathrm{TeV})$")
134
135 plt.tight_layout()
136 plt.show()
Raw table, uninterpolated (100, 100), Interpolated to a (300, 300) grid

In the high-stats central region, we get a nice smooth interpolation function. Of course we can see that there are a few more steps to take before using this table: * - need to deal with cases where the table had low stats near the edges (smooth or extrapolate, or set bounds) - may need to smooth the table even where there are sufficient stats, to avoid wiggles

Total running time of the script: (0 minutes 1.021 seconds)

Gallery generated by Sphinx-Gallery