Source code for ctapipe.image.pixel_likelihood

"""
Class for calculation of likelihood of a pixel expectation, given the pixel amplitude,
the level of noise in the pixel and the photoelectron resolution.
This calculation is taken from :cite:p:`denaurois2009`.

The likelihood is essentially a poissonian convolved with a gaussian, at low signal
a full possonian approach must be adopted, which requires the sum of contributions
over a number of potential contributing photoelectrons (which is slow).
At high signal this simplifies to a gaussian approximation.

The full and gaussian approximations are implemented, in addition to a general purpose
implementation, which tries to intellegently switch
between the two. Speed tests are below:

neg_log_likelihood_approx(image, prediction, spe, ped)
29.8 µs per loop

neg_log_likelihood_numeric(image, prediction, spe, ped)
93.4 µs per loop

neg_log_likelihood(image, prediction, spe, ped)
59.9 µs per loop

TODO:
=====
- Need to implement more tests, particularly checking for error states
- Additional terms may be useful to add to the likelihood
"""

import numpy as np
from scipy.integrate import quad
from scipy.special import factorial
from scipy.stats import poisson

__all__ = [
    "neg_log_likelihood_approx",
    "neg_log_likelihood_numeric",
    "neg_log_likelihood",
    "mean_poisson_likelihood_gaussian",
    "mean_poisson_likelihood_full",
    "PixelLikelihoodError",
    "chi_squared",
]

EPSILON = 5.0e-324


[docs] class PixelLikelihoodError(RuntimeError): pass
[docs] def neg_log_likelihood_approx(image, prediction, spe_width, pedestal): """Calculate negative log likelihood for telescope. Gaussian approximation from :cite:p:`denaurois2009`, p. 22 (equation between (24) and (25)). Simplification: .. math:: θ = σ_p^2 + μ · (1 + σ_γ^2) → P = \\frac{1}{\\sqrt{2 π θ}} · \\exp\\left(- \\frac{(s - μ)^2}{2 θ}\\right) \\ln{P} = \\ln{\\frac{1}{\\sqrt{2 π θ}}} - \\frac{(s - μ)^2}{2 θ} = \\ln{1} - \\ln{\\sqrt{2 π θ}} - \\frac{(s - μ)^2}{2 θ} = - \\frac{\\ln{2 π θ}}{2} - \\frac{(s - μ)^2}{2 θ} = - \\frac{\\ln{2 π} + \\ln{θ}}{2} - \\frac{(s - μ)^2}{2 θ} - \\ln{P} = \\frac{\\ln{2 π} + \\ln{θ}}{2} + \\frac{(s - μ)^2}{2 θ} We keep the constants in this because the actual value of the likelihood can be used to calculate a goodness-of-fit value Parameters ---------- image: ndarray Pixel amplitudes from image (:math:`s`). prediction: ndarray Predicted pixel amplitudes from model (:math:`μ`). spe_width: ndarray Width of single p.e. peak (:math:`σ_γ`). pedestal: ndarray Width of pedestal (:math:`σ_p`). Returns ------- ndarray """ theta = 2 * (pedestal**2 + prediction * (1 + spe_width**2)) neg_log_l = np.log(np.pi * theta) / 2.0 + (image - prediction) ** 2 / theta return neg_log_l
[docs] def neg_log_likelihood_numeric( image, prediction, spe_width, pedestal, confidence=0.999 ): """ Calculate likelihood of prediction given the measured signal, full numerical integration from :cite:p:`denaurois2009`. Parameters ---------- image: ndarray Pixel amplitudes from image (:math:`s`). prediction: ndarray Predicted pixel amplitudes from model (:math:`μ`). spe_width: ndarray Width of single p.e. peak (:math:`σ_γ`). pedestal: ndarray Width of pedestal (:math:`σ_p`). confidence: float, 0 < x < 1 Upper end of Poisson confidence interval of maximum prediction. Determines upper end of poisson integration. Returns ------- ndarray """ epsilon = np.finfo(np.float64).eps prediction = prediction + epsilon likelihood = np.full_like(prediction, epsilon, dtype=np.float64) n_signal = np.arange(poisson(np.max(prediction)).ppf(confidence) + 1) n_signal = n_signal[n_signal >= 0] for n in n_signal: theta = pedestal**2 + n * spe_width**2 _l = ( prediction**n * np.exp(-prediction) / np.sqrt(2 * np.pi * theta) / factorial(n) * np.exp(-((image - n) ** 2) / (2 * theta)) ) likelihood += _l return -np.log(likelihood)
[docs] def neg_log_likelihood(image, prediction, spe_width, pedestal, prediction_safety=20.0): """ Safe implementation of the poissonian likelihood implementation, adaptively switches between the full solution and the gaussian approx depending on the prediction. Prediction safety parameter determines cross over point between the two solutions. Parameters ---------- image: ndarray Pixel amplitudes from image (:math:`s`). prediction: ndarray Predicted pixel amplitudes from model (:math:`μ`). spe_width: ndarray Width of single p.e. peak (:math:`σ_γ`). pedestal: ndarray Width of pedestal (:math:`σ_p`). prediction_safety: float Decision point to choose between poissonian likelihood and gaussian approximation. Returns ------- ndarray """ approx_mask = prediction > prediction_safety neg_log_l = np.zeros_like(image, dtype=np.float64) if np.any(approx_mask): neg_log_l[approx_mask] += neg_log_likelihood_approx( image[approx_mask], prediction[approx_mask], spe_width[approx_mask], pedestal[approx_mask], ) if not np.all(approx_mask): neg_log_l[~approx_mask] += neg_log_likelihood_numeric( image[~approx_mask], prediction[~approx_mask], spe_width[~approx_mask], pedestal[~approx_mask], ) return neg_log_l
[docs] def mean_poisson_likelihood_gaussian(prediction, spe_width, pedestal): """Calculation of the mean of twice the negative log likelihood for a give expectation value of pixel intensity in the gaussian approximation. This is useful in the calculation of the goodness of fit. Parameters ---------- prediction: ndarray Predicted pixel amplitudes from model spe_width: ndarray Width of single p.e. distribution pedestal: ndarray Width of pedestal Returns ------- ndarray """ theta = pedestal**2 + prediction * (1 + spe_width**2) mean_log_likelihood = 1 + np.log(2 * np.pi) + np.log(theta + EPSILON) return mean_log_likelihood
def _integral_poisson_likelihood_full(image, prediction, spe_width, ped): """ Wrapper function around likelihood calculation, used in numerical integration. """ image = np.asarray(image) prediction = np.asarray(prediction) like = neg_log_likelihood(image, prediction, spe_width, ped) return 2 * like * np.exp(-like)
[docs] def mean_poisson_likelihood_full(prediction, spe_width, ped): """ Calculation of the mean of twice the negative log likelihood for a give expectation value of pixel intensity using the full numerical integration. This is useful in the calculation of the goodness of fit. This numerical integration is very slow and really doesn't make a large difference in the goodness of fit in most cases. Parameters ---------- prediction: ndarray Predicted pixel amplitudes from model spe_width: ndarray Width of single p.e. distribution pedestal: ndarray Width of pedestal Returns ------- ndarray """ if len(spe_width) == 1: spe_width = np.full_like(prediction, spe_width, dtype=np.float64) if len(ped) == 1: ped = np.full_like(prediction, ped, dtype=np.float64) mean_like = np.zeros_like(prediction, dtype=np.float64) width = ped**2 + prediction * spe_width**2 width = np.sqrt(width) for i, (pred, w, spe, p) in enumerate(zip(prediction, width, spe_width, ped)): lower_integration_bound = pred - 10 * w upper_integration_bound = pred + 10 * w integral, *_ = quad( _integral_poisson_likelihood_full, lower_integration_bound, upper_integration_bound, args=(pred, spe, p), epsrel=0.05, ) mean_like[i] = integral return mean_like
[docs] def chi_squared(image, prediction, pedestal, error_factor=2.9): """ Simple chi-squared statistic from Le Bohec et al 2008 Parameters ---------- image: ndarray Pixel amplitudes from image (:math:`s`). prediction: ndarray Predicted pixel amplitudes from model (:math:`μ`). pedestal: ndarray Width of pedestal (:math:`σ_p`). error_factor: float Ad-hoc error factor Returns ------- ndarray """ chi_square = (image - prediction) ** 2 / (pedestal + 0.5 * (image - prediction)) chi_square *= 1.0 / error_factor return chi_square